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ABSTRACT 

A review of detection threshold concepts is followed by an investigation into 
published theory for the detection of signals in noise. A set of empirical formulae 
relating minimum detectable signal to some basic sonar system parameters is 
presented. The formulae are compared and a recommendation made as to which is the 
most useful for the calculation of an omnidirectional narrowband lofargram minimum 
detectable signal for power detection of sinusoidal signals in Gaussian noise. 
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Application of Detection Theory to the Measurement 
of the Minimum Detectable Signal for a Sinusoid in 

Gaussian Noise Displayed on a Lofargram 

Executive Summary 

This report supports the development of tools for the measurement of sonobuoy 
acoustic processor performance. It contains a review of detection threshold concepts 
and an investigation into the published literature relating to the detection of signals in 
noise. The tutorial style coverage of the detection of sinusoids in noise using 
lofargrams provides an introduction to those involved in signal analysis, acoustic 
processor testing and the ttaining of sonar operators. 

Minimum detectable signal (MDS) studies are of interest because they provide the 
ability to quantify the performance of systems designed to detect a signal in a 
background of noise. Absolute performance can be compared to the theoretical ideal, 
while relative performance can be used to quantify the effect of changes to system 
hardware or software. 

Study of the literature shows several analysts have tackled and solved much of the 
more difficult detection theory, (to an accuracy of tenths of a decibel), with a high 
degree of consistency between analysts. This paper puts that work into a context 
suitable for sonar system detection performance studies. 

Practical spectrogram and lofargram processing and display limitations are then 
discussed, and an attempt made to quantify their effect upon a systems MDS. 
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1. Introduction 

This report describes work carried out in support of Tasks ADA 95/161 'Support for 
P3-C Airborne Acoustic Systems' sponsored by Director General Force Development 
(Aerospace) and NAV 95/160 'Support for S-70B-2 Airborne Acoustic Systems', 
sponsored by Director Naval Warfare. 

The aim of this work was to review in detail the published literature on detection 
threshold theory as it applies to the detection of sonar signals in a background of noise. 

Radar technology appears to have provided the initial motivation for extensive 
development of the theory of detection of signals in noise, but similar problems also 
soon arose in sonar, resulting in a large body of related theoretical studies. 

Detection theory has a long history, as seen from [1 Lawson and Uhlenbeck], [2 
Harrington], [3 Reich and Swerling], [4 Peterson et al.], [5 Helmstrom], [6 Marcum] 
and [7 Whalen], with considerable analytic effort having being applied to models of 
the detection process, ranging from the detection of unknown (and noise like) signals 
in noise to the detection of sinusoidal signals of known frequency, phase and 
amplitude in noise. The input noise, in most studies, has been assumed to be Gaussian 
for mathematical simplicity. 

Equations describing the detection process have usually not been solvable in closed 
form. However, several analysts such as [8 Marcum], [9 Robertson] and [10 Nuttall ], 
have applied numerical techniques and simplifying approximations, for particular 
signal and noise conditions, to arrive at useful solutions. Further, in recent times a 
closed form curve fitted approximation to the [9 Robertson] solutions has been 
developed by [11 Albersheim]. 

By selecting and interpreting appropriate analyses, this report aims to apply the 
numerical results of relevant theory to detection threshold estimation for the case of 
sinusoidal signals of random phase in Gaussian noise, examined on a sonar system's 
lofargram display. 

2. Definitions 

To clarify the nomenclature used in this report, and introduce some frequently used 
terms and abbreviations, the following definitions are presented. They may not be 
universal to all authors, but are widely accepted. 
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2.1   Detection Threshold (DI) 

DT is defined as the Signal to Noise Ratio (SNR), at the systems receiver input, 
required to achieve detection of a signal in noise with a specified Probability of 
Detection (Pd) and a specified Probability of False Alarm (Pfa). This report shall use a 
convention of Pd = 0.5 (50%) and Pfa = lfr4 (0.01%), as these represent useful operational 
sonar parameters. 

2.2 Minimum Detectable Signal (MDS) 

MDS is closely related to DT and is used to quantify the overall performance of sonar 
systems. It is defined as the Signal to Noise Ratio (SNR), at the systems sensor input, 
required to achieve detection of a signal in noise at the final output, with a specified 
Probability of Detection (Pd) and a specified Probability of False Alarm (Pfa). MDS is 
therefore inclusive of any beamforming processing by the system. Note that in an 
omnidirectional sonobuoy system, if the hydrophone, radio transmission system and 
signal conditioning are loss free, MDS = DT. 

2.3 Power Spectrum and Power Spectral Density (PSD or psd) 

The total power Px of a signal x(t), (in the sense of being related to physical power by a 
dimensionless scaling constant) is, from [16 Press, p.498] and Parseval's Theorem, 

oo oo 

Px= \\x(t)\2dt= j\X(ffdt (4) 

if the Fourier transform X(f) of x(t) exists. The quantity \X(f)\ is known as the power 
spectrum of the signal x(t), and is real. Power spectral density (psd) is obtained by 

dividing \X(f)\2 by the analysis filter bandwidth [41 Randall p.142 and 32]. The result 

has units of Volts2seconds/Hertz, and is independant of frequency. 

It is necessary to identify two classes of signal - stationary detenrdnistic (e.g. sinusoids) 
and stationary stochastic (i.e. random) . A sinusoidal signal component has a Fourier 
term which is a delta function, zero width and infinite height, but finite area defined 
by the power of the sinusoid. Hence the psd of a discrete frequency is meaningless 
because it has zero bandwidth. Conversely, a random signal psd must be integrated 
over a finite bandwidth to give a finite energy. In detection theory, we deal with 
sinusoids in noise, analysed with a defined bandwidth B. 

A continuous signal x(t) which represents a stationary process could theoretically have 
infinite power, as it exists for all time. This means the Fourier integral over all time is 
unbounded and therefore the signal would not have a Fourier transform. It does, 
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however, have finite average energy, and therefore can have a power spectrum: this is 
also known as an envelope spectrum [17 Hodgekiss and Anderson, p.215]. To deal 
with such signals a finite sample over 2To seconds is taken for analysis, where To is an 
arbitrary value. The actual power spectrum is then the expected value [15 Proakis 
p.870] of 

p-<f>-k 
To 

jx(t)t -J2K) «ftdt (5) 

as the blocked time interval To->°o [15 Proakis, p.870]. 

If x(t) is a real signal, then the one sided power spectrum (incorporating both positive 
and negative frequencies) is 

or 
Px(f)=W)\2+\x(-f)l 

Px(f) = 2\X(f)\\ 

0</<°o 

0</<oo. 

(6) 

(7) 

2.4 Periodogram 

A display of power spectral density or frequency spectrum, (which may include the 
average of many independent measurements) is known as a periodogram [15 Proakis, 
p.869] and [16 Press, p.574], or sometimes a spectrogram. A biased psd estimate, in the 
sense that it is not a consistent estimate of the true power density spectrum (see section 
4.1), of a time series x(n) is given by the periodogram psdx(fn) [15 Proakis, p.872] where 

psdx(fn) = 
NB 

JV-l 

T.x(n)e~ 
n=0 

■j2itfn (3) 

Note that the DFT bin width B has been included in Equation (3). Many texts use terms 
such as 'power density spectrum' and 'power spectral density' without applying the 
necessary frequency scaling to the expressions. This does not affect the shape of the 
resulting spectrum, only the scaling and units. Figure 1 is an example of a DFT 
generated periodogram, with a smooth line joining each value to produce a continuous 
displayed result. Decibel scaling is produced by calculating 101ogio(P*(#). 
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Figure 1.    A periodogram showing a sinusoid in noise. 

When the magnitude of a windowed (and possibly overlap processed) Fast Fourier 
Transform is used, the displayed result is sometimes referred to as a Welch 
periodogram [15 Proakis, p.877] and [14 Nielsen, p.73], and is often found in sonar 
signal processing. 

The variance of a periodogram estimate of the power spectral density does not 
approach zero as the number of samples (or block size) is increased [18 Marple, p.127]. 
To this extent, a periodogram can be considered a biased estimator of the true psd. An 
average of several independent periodograms (for example, Bartlett's smoothing 
procedure [15 Proakis p.875] and [18 Marple, p.153]) is required to obtain an estimate 
whose variance does approach zero [19 Leon-Garcia, p.422]. 

2.5 LOFARgram 

LOFAR (or lofar) is an acronym, from early sonar, for LOw Frequency Analysis and 
Recording. A lofargram is a display, often used to show sonar data, which plots time 
versus frequency with intensity a function of energy level. It usually comprises a 
vertically scrolling time history of intensity modulated lines (or rows) which represent 
consecutive frequency spectra (spectrograms) of a continuous input signal: an example 
is Figure 2. It may be visualised as a column of two dimensional periodograms, where 
brighter points indicate a stronger signal in that time interval (or row) and frequency 
interval (or column). Each row comprises pixels, where the intensity of each pixel 
represents the energy in a small frequency window (or bin) over a particular period of 
time. Columns represent sequential frequency intervals and rows represent 
consecutive time intervals. 
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Lofargrams assist an observer using pattern recognition to visually identify continuous 
narrowband signal frequencies, apparent as vertical lines, as the spectral contribution 
will statistically place more energy in those spectral bins corresponding to the presence 
of a narrowband signal. 

Note presence of a sinusoidal tone at this frequency. 

Figure 2.     A lofargram display. The vertical axis is time and the horizontal axis frequency. 

Usually each display row is the result of coherent bandpass filtering, (via a windowed 
Discrete Fourier Transform), and subsequent incoherent filtering (column based 
energy summation). Incoherent summation may also be described as post detector 
integration. 

2.6 Equivalent Noise Bandwidth (ENBW, B„) 

When a time domain signal is windowed (see Section 4.1.2), there is a complementary 
effect in the frequency domain. One measure of this is the ENBW, the bandwidth of a 
rectangular filter with the same centre frequency which would pass an equivalent 
amount of noise. Thus if a receiving system has a frequency response H(f) then, 
according to [12 Meyer and Mayer, p. 3] 

B = 
\H(fo)\ 

CO 

\\H<jfdf (1) 

where fo is the frequency at mid-band or the frequency of maximum response. 
Alternately, [13 Harris, p.54] and [14 Nielsen, p.166] show the equivalent sampled time 
domain representation, (normalised by M/T, the noise power per DFT bin), as 
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5>2(»r> 
ENBW = —z  

"Zx(nT) 
(2) 

where x(nT) is the time domain series sampled every T seconds. 

Note that the ENBW is not the same as the half-power bandwidth (the so called 3 dB 
bandwidth), although for many receivers this may be a good approximation. 

2.7 Probability Density Function {pdf ox PDF) 

A stationary (ergodic) continuous random signal x(t) takes on an infinite number of 
values, and the probability of it taking on a particular value is vanishingly small. Thus 
a useful descriptor for such a signal is the probability that the signal occupies a small 
range of values. This is essentially an amplitude domain statistic of the signal. Suppose 
St/ To is the fraction of time that the signal spends in the range u to u+äi over a total 
time duration To. Then as <5«-»0, the probability density function of x at u, pdfx(u) can 
be defined as 

Pdfx(u) = 
Urn 

bu ->0 

Lim 

r0->co 
'&^ 
\T0J 

8« 
(8) 

Note also that, by definition, 

b 

Pr obability(a < x < b) = I pdfx(u) du 

and 
00 

\pdfx(u)du = 

(9) 

(10) 

Examples of some frequently encountered pdfs are given in Appendix A, with a 
tabulated description of how they relate to detection theory. 
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2.8 Receiver Operating Characteristic (ROC) 

A Receiver Operating Characteristic (ROC) is the relationship between Probability of 
False Alarm (Pjk), Probability of Detection (Pd) and Signal to Noise Ratio (SNR) or 
alternatively detection index (d) as a third parameter. Plots of the resulting functions 
are known as ROC curves. Appendix B shows how to generate an ROC curve for the 
Gaussian random variable. 

3. Detection Threshold Concepts and Theory 

3.1 Probability Theory and Detection 

If there is a continuous signal s(t) and continuous Gaussian noise n(t), respective 
probability density functions pdf and pdf„ can be defined, representing the 
probabilistic frequency distributions. The signal s(t) can be added to the Gaussian 
noise n(t) to produce a composite signal x(t)=s(t)+n(t) with resultant probability 
density function pdfx. Strictly, however, a pdf is only properly defined if the random 
variable is in some sense stationary [15 Proakis, p.932], (otherwise the pdf may vary 
with time or some other parameter). Assuming this to be true, then, by definition, 

x 

Probabilityfs <X) = \pdfs (u) du, (11) 
-CO 

X 

Probability(n<X) =  \pdf„(u) du and (12) 
-co 

X 

Probability(x <X) =  \pdfx(u)du. (13) 
-co 

The probability density functions of a signal with noise, pdfx, and noise only, pdf„ may 
be drawn in the manner shown by the illustrative example of Appendix B as <|)s+n and 
<|>„ respectively. In this example, the mean of the signal with noise distribution has 
clearly increased over that of the noise alone. By definition, the total area under a pdf 
curve must equal unity. What is evident from this graph is that at any selected 
threshold X, the probability of detecting a signal, if a signal is present, is the area under 
the <t>s+n curve from X to oo, corresponding to the probability of the input exceeding X. 
However, the probability that noise alone could cause the input to exceed the 
threshold value is in turn given by the area under the (j)n curve from X to ». Thus a 
simple binary detection criterion has been established: for the noise and signal with 
noise pdfs prevailing, set a X such that when it is exceeded a detection is called, while 
accepting that this will entail an inevitable probability of false alarm. A decision matrix 
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can be drawn to illustrate each of the binary possibilities, as in Table 1 below [5 
Helmstrom, p.61]. 

Table 1. Detection Decision Matrix. 

Detection called No detection 
Signal present Correct Detection False Dismissal1 

Signal absent False Alarm2 Correct Dismissal 

1 Error of the second kind 
2 Error of the first kind 

It is evident that there are two independent variables operating.  By sensible 
convention, the primary detection measures of interest are 

(a) Probability of correct detection (Pd) 
and 

(b) Probability of false alarm (Pfa). 

Clearly it is also true that 

Probability of false alarm = 1- Probability of correct dismissal, and 
Probability of correct detection = 1 - Probability of false dismissal. 

Now define a hypothesis, Hi, which will be true if there is a signal present with the 
noise. Further, define Ho to mean the hypothesis that there is no signal present (i.e. 
there is only noise). Then the probability that a correct detection is made is the 
conditional probability that, given a signal is present, the input threshold is exceeded: 

Probability of correct detection = P(x(t) > X | Hi) 
or 

CO 

Pd= \pdfwM)du- 

(14) 

(15) 

Similarly, the probability of a false alarm is the conditional probability that, given 
there is no signal present, the threshold is exceeded: 

or 
Probability of false alarm = P(x(t) > k | Ho) 

00 

Pfa= JWxiHo (">*"• 

(16) 

(17) 
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It is next necessary to determine the optimum X to achieve the desired Pfa and Pa- As X 
is the threshold SNR required for detection, a minimum value is sought. For example, 
if X is a function of the phase of the signal, then an average over a 2n range may be 
required if the phase can be assumed to be a random variable. Several decision theory 
approaches to formulating the required (sometimes multidimensional) hypothesis 
testing equations are addressed in the literature: [7 Whalen, pl28], [5 Helmsrom, 
p.129], [20 Burdic, p364] and [14 Nielsen, p.117], including the use of Maximum 
Likelihood, Neyman Pearson and Bayes Criterion. 

The Bayes Criterion is a method of minimising average risk over the decision space, 
and can be applied only if all the prior probabilities and their costs are well defined. 

It has been shown [14 Nielsen, plOl], [14 Nielsen, p.116], [5 Helmstrom, p.130] and [7 
Whalen, p.130] that the maximum probability of detecting a signal from a single 
detection sample, while controlling the incidence of false alarms, given that the a priori 
probabilities Pr(Ho) and Pr(Hi) are unknown, can be identified by using a Neyman- 
Pearson detector. This is done by forming a pdf likelihood ratio test X(u), formed such 
that Hi is chosen if X exceeds X(u), formed as 

m-tWs (18) V
 }    pdfHo(u) 

where u is a single observation of the received sequence. 

[7 Whalen, Ch7] develops the Neyman-Pearson detector for continuous waveforms 
whereas [14 Nielsen, p.117] does so for a sampled waveform, so the latter is more 
useful for analysing digitally based signal processing systems. [12 Meyer and Mayer, 
p.69] also suggest a trial and error approach based upon the Gram-Charlier series has 
been found to be useful. 

3.2 The Sinusoidal Signal in Gaussian Noise 

A sampled time domain sinusoidal signal s(n) can be defined by 

s(n) = Asin{l%^ + <d\ forn = 0...M-l (19) 
v Js J 

where 
M = the total number of samples and 
fs = the sampling rate in samples per second. 

and then, for a time domain noise function g(n), the received signal x(n) obtained when 
a sinusoid is present in the noise becomes 
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x(n) = s(n) + g(n) (20) 

At the receiver, a decision between the two hypotheses, Hi:signal present, and 
Horsignal absent, based on N measurements, then needs to be made, viz. 

Hv'x(n) = A sin &Ä+9' 
or 

H0: x(n) = g(n) 

+ g(n) forn = 0, ..,N-1 

for n = 0,.., N-l. 

(21) 

(22) 

If g(n) is zero mean white Gaussian noise, then after it has been through a square law 
(or magnitude squared) device, it has a pdf which can be written: [20 Burdic, p.256] 

pdf, a (w) = 
1 

ag4lnu 
exp 

2<J 
f or u > 0 (23) 

(A time domain representation is somewhat more complex and is not essential for this 
discussion). It has been shown [7 Whalen, p.102], [14 Nielsen, p.115], [20 Burdic, p.260] 
and [21 Tsui, p268] that the pdf of the magnitude (or envelope) function of a 
narrowband Gaussian process, g(n), is the Rayleigh function, 

pdflgl(g) = -^exp 
f 

g 

\ 2<J 
forg>0 (24) 

and that the distribution of the envelope of the sinusoidal signal when combined with 
narrowband Gaussian noise, pdf. .,   , is the Rician function [7 Whalen, p.105], [21 Tsui, 

p.270] and [14 Nielsen, p.115], 

^ll*W = ZTexP 
x2+A2 

2<   J 

Ax 

^ 
, f or x > 0, (25) 

where I0 is the modified Bessel function of zero order, defined by: 

v2* 
/o(v) = Z^T7^ ti22n(kl) 2  * 

Application of the relevant pdfs, using the approach of section 3.1, lead to the results 
for Pd and Pj* outlined in the following paragraphs. 

10 
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If the receiver threshold level is set at X, and a detection decision is made from one 
square law detection measurement, with the phase of the sinusoidal signal randomly 
distributed between 0 and 2n, then [7 Whalen, pl08], [14 Nielsen, p.120] and [21 Tsui, 
p.274], 

00 

exp 
r   u2 

2a- 
du = exp (26) 

\2a2)' 

which can be seen to result from setting A=0 in the expression for pdfM\Hi above. 

If the receiver threshold level is set at X, and if a detection decision is made from the 
sum of N square law detected measurements, with the phase of the sinusoidal signal in 
each measurement randomly distributed between 0 and 2TC, then [7 Whalen, pll2], [14 
Nielsen, p.120] and [21 Tsui, p.275], 

Pd 

00 

exp 
u2 <fi 

2\ 

\ 

2a2 

) 

H 
fuAN' 

2& 
du (27) 

The above expression can be written in the form [12 Meyer and Mayer, Sect 3.4], [14 
Nielsen, p.121] and [20 Burdic, p.370], 

oo 

4 ld- jvexp|- 

P 

v2+cc2^ 

2    ) 
/0(va)rfx = ß(a,ß) (28) 

where ß(a, ß) is the Marcum Q-function [8 Marcum] and [7 Whalen, p.106], which is 

one minus the cumulative Rician pdf. 

An alternative formulation by [22 Williams and Ricker] yields a similar result as 
follows. If a set of M samples of a signal in white Gaussian noise are to be detected, 
and a normalised averaged power sample Z produced, men a Fourier transform of 
duration T (with incoherent integration of the individual transformed samples) results 
in a Pjj, defined by the integral of a Chi-square density function as follows: 

oo 

4 -M (K 
M       7*f-1 

\NJ    (M-l)! 
exp -^Z\dZ 

K   N 
(29) 

and Pd is determined by the integral of a non-central Chi-square density function, 

11 
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f M Jf     (   \MZ    MS\]T     [2MJSZ\„ 

Af+1 /   p 

where S is the signal power and N the noise power in each sample at the integrator 
input, 7M_! is a Bessel function of order M-l and X is the detection threshold. 

3.3 Detection Threshold 

The Detection Threshold DT, in decibels, for detecting a signal in noise is defined by 
the signal to noise ratio (SNR), as per the following equation: 

DT = \0Logw -§ = lOLog10(SNR), (31) 
N 

where S is the signal power in the receiver bandwidth at the input and N is the noise 
power density in the receiver bandwidth at the input to the receiver, required to 
achieve a specified Pd and Pfa, which in this report have been chosen to be Pd = 0.5 and 
Pja = ICH. To be of use, it is usually necessary to work with more practical quantities 
than S, N and SNR, such as the signal plus noise power, as discussed in the next 
section. 

For most narrowband DT studies the input SNR is calculated as 

sinusoidal signal power in bandwidth B 
oNR = ■ , \o2) 

noise power in 1 Hertz band 

noting that the receiver bandwidth B is of course much greater than that of the 
narrowband signal. 

To obtain the detection threshold for a sinusoidal signal in Gaussian noise, a solution 
minimising X in the Pd and P/a equations in the previous sections needs to be obtained. 
This is a very difficult mathematical problem [6 Marcum], [9 Robertson ] and [10 
Nuttall], but approximate solutions have been obtained, essentially using the decision 
theory of the Neyman-Pearson criterion, discussed in section 3.1. 

3.4 Detection Index 

If the receiver has a bandwidth B and the noise is white and Gaussian over the receiver 
bandwidth, then N=BNo, where No is the noise power spectral density in a 1 Hz band. 
Further, as the signal power is rarely a measurable quantity in a detection problem 

12 
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(that is, it is usually an unknown quantity in a real system), a more useful but related 
'SNR' is defined in [1 Lawson and Uhlenbeck], [12 Meyer and Mayer, p.73], [23 Urick, 
p.382] and [20 Burdic, p.366]: the detection index, d, sometimes known as the 
deflection or detection criterion, where 

d = (Means+N - MeanN)2 

a2 

where 
Means+N = mean value of the signal in noise at the thresholder 
MeariN = mean value of the noise only at the thresholder 
a= standard deviation of noise at the thresholder (assuming o=<Tn=<Ts+n) 

[4 Peterson et al] have found that for a completely unknown signal in Gaussian noise, 
if Signal power/Noise power in a 1 Hz band is small and the product of the receiver 
bandwidth B and signal duration time T is large, then [23 Urick, p.384] 

= BT[ 
r2 

so that DT can then be expressed as 

(34) 

DT = lOLogmBT 
' S^ 

VNJ 

2 

— (35) 
B2 V   ' 

where N is the total noise power in bandwidth B and No the noise power in a 1Hz 
band. Hence 

DT = 5Logl0[?f) (36) 

If either S/N is large or the bandwidth time product is small then a correction to the 
above equation is required, as the mathematics reverts to the Equations (29) and (30) 
above. This occurs in a progressive manner, such that Equation (36) is a satisfactory 
first approximation. 

3.5 Receiver Operating Characteristic Curves 

Receiver Operating Characteristic (ROC) curves [23 Urick p.381], [12 Meyer and 
Mayer], (where they are referred to as Meyer plots) and [7 Whalen p.202] are a set of 
plots of the Probability of False Alarm (Pfa), versus Probability of Detection (Pd), with 
Signal to Noise Ratio (SNR) or detection index (d) as a third parameter. The curves 
result from the probability density functions of the noise alone and signal with noise, 
measured at the thresholder where detection decisions are to be made. Appendix B 
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shows an example of a ROC curve applied to detection of a constant signal in Gaussian 
noise. 

ROC curves for a sinusoidal signal in Gaussian noise are obtained by solving for the 
optimum (in this case minimum) X (or SNR) in section 3.1 above, given the noise and 
signal plus noise pdfs. A closed form solution has only been obtainable for the case of 
noise alone, with a single sample used for detection. All other cases must be solved 
using numerical techniques and simplifying approximations. 

ROC curves allow DT or MDS values to be calculated at values of Pd and Pfa other man 
the normalised values. This is necessary, for example, if an experimental measurement 
of MDS is performed, as it is very unlikely that the experimental results from different 
observers would correspond to Pd=0.5 and P/fl=l(R The ROC curves enable adjustment 
of the measured SNR to the normalised SNR, or MDS. 

4. Detecting Sinusoids in Spectrograms 

4.1 Practical spectral analysis 

Spectral analysis is performed to generate an estimate of the power spectrum of the 
input function. It is this estimate which is used in the detection process described 
above. The results are usually displayed graphically in some kind of spectrogram or 
lofargram. Narrowband (sinusoidal) signals are then evident as sharp peaks, or lines, 
in an otherwise uniform background, because they cause a relatively high local psd 
about their centre frequency. 

To maximise the detection index d, which is a measure of the systems SNR, it has been 
shown [24 Gardner, p.104] that the periodogram provides optimum detection statistics, 
for the case of a sine wave in white (band-limited) Gaussian noise with unknown 
amplitude, phase and frequency. 

To obtain accurate predictions of the performance of a spectrogram for the detection of 
sinusoids in Gaussian noise, some of the practical limitations of realisable 
measurement techniques and equipment need to be taken into account. 

Usually the input time waveform being analysed is continuous and memory and 
digital signal processor architecture constraints mandate sampling, quantising and 
blocking of the input waveform. Also, to provide a progressive indication of the results 
of computations on an ongoing basis requires blocking of the data stream, followed by 
optional averaging of blocks, to achieve a low pass filtered result. There is a tradeoff 
here in the smoothness (or smaller variance) in the psd estimate versus the frequency 
resolution [18 Marple, p.132], although for signal detectability the latter would be more 
important [18 Marple, p.19]. Sometimes exponential averaging is used to provide a 
weighted filter, where the latest blocks have a greater influence on the output. Recall 
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also, from Section 2.6 that the power spectral density estimate variance does not 
approach zero as block size is increased [15 Proakisp.873] - Bartlett's smoothing 
procedure or some other method must be used to achieve this result [19 Leon-Garcia, 
p.419]. 

4.1.1 Discrete Fourier Transform (DFT) 

The discrete Fourier transform (DFT) and its derivative, the fast Fourier transform 
(FFT) are the finite time duration (or finite block size) sampled implementations of the 
Fourier series. The Fourier transform can be defined [15 Proakis, p.175] and [20 Burdic, 
p.195] as 

X(f)=)x(t)e-2Mfidt (37) 
-00 

where the X(f) are known as the Fourier coefficients of x(t), because 

x(t) = ZX(f)S* (38) 
n 

(Note that the sign of the power exponent is sometimes inverted in definitions, but this 
does not affect self consistent derived results, as in for example [16 Press, p.503]). The 
DFT can then be defined to be the repeating series of length N, 

where 
k 

XJHC* sample of the input waveform, taken at time tn= — 

N=total number of time domain samples (block size) 
T=DFT input time series length=block size in seconds, 
/s=sampling frequency =N/T 

It is evident that the DFT, unlike the Fourier transform, has finite frequency domain 
resolution. The FFT is an efficiently computed DFT, and therefore yields the same X„ 
values. 

The ability to be able to process the sampled input data only in fixed, finite sized 
blocks results in a well defined frequency resolution equal to/r, where 

f =- = L- (40) 
Jr     T     N 

This resolution, in turn, defines how finely the psd function of the input waveform is 
being analysed. Further, each discrete frequency bin from the DFT can be viewed as 
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essentially the output of a narrrowband filtering operation [25 Altes] and [14 Nielsen, 
p.158]. 

One improvement upon the simple DFT process can be achieved by overlapping the 
blocked data processing, thereby introducing redundant processing. The penalty is 
clearly an increased computational demand. However, the partitioning of the input 
data samples into blocks without rnamtaining phase continuity irrevocably removes 
block to block coherence. This is discussed in Section 5.2. If the signal to be detected is 
a continuous sinusoid, this loss of coherence introduces a theoretical detection 
performance loss [14 Nielsen, p.122] and [7 Whalen, p.205]. Other than DFT techniques 
are required to avoid this detection threshold penalty, such as form correlation, 
matched field processing [24 Gardner, p.107] or parametric techniques [14 Marple, 
p.172]. 

4.1.2 Windowing 

It is often necessary to not only detect a narrowband signal in noise, but 
simultaneously resolve closely spaced signals. Also, in many applications, the 
spectrum is cluttered with signals, many of which are of minimal interest to the 
observer. This results in desired signals being smeared, obscured or swamped, through 
a process of spectral leakage [13 Harris] and [15 Proakis, p.861]. Application of a well 
chosen time domain weighting function, or window function, to the blocked, time 
sampled data prior to a DFT operation, dramatically improves the adjacent tonal 
discrimination [13 Harris ], [26 Nuttall], [27 Hamming], [28 Blomqvist], [29 Gade] and 
[30 Geckinli]. The process is known as windowing. However, the penalty in achieving 
this superior discrimination is increased equivalent noise bandwidth, corresponding to 
an increased main lobe width, which translates directly into a DT penalty (i.e., an 
increase in DT). This is the result of the wider main lobe allowing more noise power 
through to the detector, even though sidelobe levels are reduced. 

Figure 3 illustrates the effect of windowing on a simple sinusoid. First, (a) the 
sinusoidal frequency is chosen to be exactly central to a DFT bin. The magnitude of the 
DFT result (b) then shows as a pure tonal. Next (c) shows the effect of the sinusoid not 
being bin central, producing high levels of undesirable spectral leakage (d). Finally, (e) 
is the result obtained when the non-central sinusoid is Harm windowed and then (g) is 
the corresponding DFT. Although a wider main lobe is evident, broad spectral leakage 
is clearly more controlled. Real time processors often need to further compromise in 
their choice of windowing function, to reduce the computational load. As a result, the 
'Von Hann' or simply 'Harm' or 'Hanning1 window, which is the raised cosine function 
with initial and final values of zero, is widely used. 
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Figure 3.     Windowing of a sinusoidal waveform. 

4.1.3 Scalloping 

Scalloping is an effect of windowing, causing the main lobe of the frequency response 
of the window function to be maximum only at the centre of a frequency bin, and 
reducing to a minimum at the frequency corresponding to the mid-point between 
adjacent pixel bins [30 Hamming, p.116] and [39 Bendat, p.394]. Thus the individual 
DFT frequency bin responses, when combined, result in an overall fluctuating system 
response as a function of frequency. A sinusoid which happens to be exactly between 
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two adjacent bins then suffers a maximum scalloping attenuation, or loss. A randomly 
placed sinusoid would, on average, suffer the average scalloping loss. Therefore the 
average loss is often particularly significant for experiments employing sinusoids of 
random frequency, and real world signals. The average scalloping loss is defined by 
[14 Nielsen, p38] and [31 Pryor, p.27] as, 

SLav(dB) = \0Log] 

\W(0f 
10 

N 

fs 
2N 

(41) 

df 

where 

W(f) = Fourier transform of the windowing function at frequency f, 
N = DFT block size and 
fs = input data sampling rate used by the DFT. 

The rectangular window has maximum scalloping loss [14 Nielsen, p38 and pi 71]. 
Scalloping loss versus DFT bin spacing for various filter types is plotted in [31 Pryor, 
p28] and maximum losses have been tabulated by [13 Harris]. Examples of the 
magnitude of the scalloping effect are given in Table 2 below. 

Table 2. Scalloping Loss (dB) for Narrowband Detection 

Window type Minimum Loss Maximum Loss Average Loss 
Rectangular 0 3.92 1.25 
Harm 0 1.42 0.5 

4.2 Summary of published solutions 

4.2.1 Urick and Nuttall Power Law Detector Model 

For power law detection of a sinusoidal signal in Gaussian noise, modelled as shown 
in Figure 4, [23 Urick] uses the work of [32 Nuttall] and [4 Petersen et al.], to develop a 
model for DT as, 

m+ DT = 5Logwy—J + Correction fm!teBT 

where 
B = narrowband filter bandwidth, 
d = detection index, 
T = total integration time and 
Correctionj-miteBT = finite bandwidth-time correction term 

(42) 
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Figure 4.     Nuttall (Ref. 32) power law detection model 

The first term in the above equation applies to a single detection sample of a Gaussian 
statistic, and the second term, under the standard conditions of Pa = 0.5 and Pfa = 104, 
is empirically approximated by CorrectionfmiteBT *3.79{BT + l)~°A°6 dB [26 Nuttall], 

and compensates for the deviation from Gaussianity at small bandwidth time 
products. [20 Burdic, p.380] shows a similar correction relationship. Appendix C 
explains the origins of this approximation and method used to compute it. 

4.2.2 Nielsen Linear Envelope Detector Model 

The sampled amplitude (or linear) detector has been numerically evaluated by [9 
Robertson] for a sinusoidal signal in narrow band Gaussian noise. Receiver Operating 
Characteristic (ROC) curves have been produced showing the relationship between 
output SNR, Probability of Detection and Probability of False Alarm. [9 Robertson] 
also found that for Pd=0.5, if an error, of magnitude always less than 0.2 dB, is 
acceptable, and the standardised threshold scale changed, the curves can also be 
applied to the square law detector. Use of the linear vs. quadratic detector comparison 
curve [9 Robertson], [12 Meyer and Mayer, p.69], [7 Whalen, p.263] and [14 Nielsen, 
p.169] could allow this approximation error to be corrected for. When relatively large 
Pfa values apply (between 5.0xl(H to 9.0xl0-2) with Pd=0.5, the difference between 
linear and square law detectors progressively diminishes to [-0.1, +0.2] dB [9 
Robertson]. For M=l, however, linear and power law detectors have the same 
performance. In general, an error of 0.2 dB theoretically corresponds to a maximum 
error of a few percent in the probability of detection [12 Meyer and Mayer, p.64]. 

More recently, [11 Albersheim] has empirically determined an accurate (to within 0.2 
dB) closed form expression for the [9 Robertson] solutions, yielding the ROC curve 
detection index (or output S/N) given a required Probability of Detection, Probability 
of False Alarm and number of independent samples, for the linear envelope detector. 
The [11 Albersheim] expression has been tested over P/»= 10'3 to 10-7, Pd=0.1 to 0.9 and 
M=l to 213 (8096). The expression is 
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S/N (dB) = -51og10M + [6.2 + -j==]log10^ + 0.12^ + 1.75;/ (43) 

where 
0.62 

1    "d 

Setting M=Kj and recognising that the SNR at the output, % = dKf [14 Nielsen, 

p.167], the theoretical DT estimate can then be expressed as, 

DT = l0Logl0(£j + l0Logl0ENBW + SL + PL- SLog^K,) + 5Log10{d)    (44) 

where 
f 

— = sampling rate / number of samples per DFT = DFT frequency bin resolution, 

ENBW = equivalent noise bandwidth of the pre-DFT windowing function, 
SL = average scalloping loss of the DFT window used, 
PL = practical processor implementation loss. Set to zero for an ideal processor, 
Kj = effective number of independent samples, 

= (DFT filter bandwidth) (observation time), and 

51og10rf = 
',o 4.54     ^ 6.2 + 

V^/ + 0.44. 
log10 (A + 0.12AB +11B), with A and B as above. 

V        -/A7 -1- v.wj 

(Note: The graph of this function in [14 Nielsen, p.169] does not appear to be plotted 
accurately. It is best to use the above equation) 

4.2.3 Pryor Power Spectrum Detector Model 

For a DFT power spectrum analyser, the  [31  Pryor]  expression developed for 
estimating the DT of a sinusoid in Gaussian noise is 

DT = Sensitivitybasic + AMDSFAP + 

AMDSPd + AMDSTd + AMDSNmFn + AMDSscalloping + AMDS^^      (45) 

where 

Sensitivitybasic = 51og10(^ - 51og1(/:r), with post detection integration (i.e., T »1/B) 

= S/N (dB) for Pd=50% and P/fl=16% 
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AMDSFAP = correction to desired false alarm rate, ~ 3.607(BT) "°-35 + 5511 
from [31 Pryor, Fig 4], ~+6.7 dB for Pp= 104, 

AMDSPd = correction if a Pd other than Pd=0.5 is required, 

AMDSTd = correction for effect of exponential integration with a finite 
observation time, (if applicable, see [31 Pryor Figure 7]), 

AMDSNBW Fn      = correction for practical bandpass filter function implementation on 
the noise spectrum, (+0.17 dB for a Harm weighted correlator, 
[31 Pryor, Table 1] 

AMDSscall0 in      = correction for response of bandpass filter on signal, (+1.4 dB 

maximum, +0.5 dB average for Harm filter, [31 Pryor, Figure 9] and 
&MDSALisampimg 

= bandpass filter post detection sampling loss, (+1.59 dB for Harm 

window function [31 Pryor, Figure 11]). 

4.2.4 Williams and Ricker Sinusoid in Gaussian Noise Model 

The general MDS equation for sinusoids of unknown frequency, in white Gaussian 
noise, referenced to noise in a 1Hz band and expressed as the SNR at the input is, from 
[22 Williams and Ricker], 

Smd = -Gc - G,(t) - Grit) - Gr(f) + 4 + <*/. + Limp (46) 

where 

Smd = minimum detectable signal to noise ratio, 

Gc = -lOLogioBN, the coherent integration gain, 

BN =    filter equivalent noise bandwidth 

= -lT'f \W(s)fds, 
2nJ   ,_ 

W(s)= Laplace transform of the band limiting filter transfer function, 

Gt(t) = the gain from XBN postdetection integrations, 
where x = duration of the signal. For Pd = 0.5 and Pß = 10-4, 
this gain can be approximated by the function 
5Logio(TBN)+4(l-exp[-0.9*logio(TBN)]), to within -0.1 dB. 

Gr(t) = gain from time redundancy between power samples, 

Gr{f) = average frequency redundancy gain, 
Lr = average ripple loss between DFT bins, (i.e., average scalloping loss), 

a   = decision threshold in dB for specified detection criteria with M=l. 

In particular, afa = +9.4 dB for Pd = 0.5 and Pp = 104, 

(From [22 Williams and Ricker, Figure 2]) and 
Lim = implementation loss, (zero for an ideal processing system). 

21 



DSTO-TR-0568 

The above equation may be further summarised as 

MDS = lOLogwBr - Gt(t) - afa + X, 

with 

Br = resolution bandwidth of the spectral analysis. 

Table 3. Values ofX (and Lr), in dB units, for two window and overlap parameters. 

(47) 

Window type 
Rectangular 
Harm 

No DFT overlap   (Lr) 
1.1 SU± 
2.7 m. 

High DFT overlap   (Lr) 
0.2 jLll 
0.2 ML 

4.3 Comparison of published results 

To compare the above authors' approaches, Table 4 computes the predicted DT for a 
sinusoid in Gaussian noise prefiltered by a Harm window, DFT analysed with 1 Hz bin 
resolution, and with the output integrated over 100 seconds. Non overlapped DFT 
processing is assumed. 

Table 4. Comparison of Predicted Detection Thresholds (dB). 

Analyst Model MDS Prediction Model - Average 
1. Urick (Ref. 23) -2.44* -0.95* 
2. Modified Urick (Ref. 23) -1.74 -0.25 
3. Nielsen (Ref. 14) -1.51 -0.02 
4. Pryor (Ref. 31) -1.48 0.01 
5. WiUiams&Ricker (Ref. 22) -1.24 0.25 

Average of 2,3,4 and 5 -1.49 

* Using the simpler method of accounting for the ENBWof a Hann window. 

This comparison shows that a simplistic treatment of ENBW in the [24 Urick] model, 
where B is replaced by ENBW*B, is inadequate (by 0.7 dB), when compared to a more 
rigorous analysis. Using the more rigorous ENBW analysis then gives a mean of the 
model predictions as MDSmean = -1.49 dB. The peak variation between the models is 
only 0.25 dB. This is very good agreement, especially given that numerical solutions 
published in graphical form needed to be applied - and that curve fit approximations 
to the graphical solutions have been used in some of this report, which in turn are 
usually only accurate to 0.1 or 0.2 dB. 

The [24 Urick] model has an advantage in being presented as an extension to simple 
Gaussian behaviour, allowing for easy approximations, usually accurate to within a 
couple of dB, to be made. However, on the strength of the above agreement, and given 
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that [14 Nielsen] and [11 Albersheim] have the easiest, closed form, acccurate model 
implementation, it is suggested that they be the preferred model for DT predictions. 

Accuracy of the [14 Nielsen] model is ±0.2 dB from the [11 Albersheim] curve fitting 
and ±0.2 dB resulting from solution of the linear (envelope) rather than power law 
detection case. Hence overall, over the range Pd=0.1 to Pd=0.9 and Pfa=10-3 to Pfa=10-7 

and BT=1 to BT=8196, theoretical prediction accuracy is always within ±0.4 dB, and on 
average can be expected to be better. For the important and often used case of Pa=0.5, 

use of the term 3.78/VM in place of 4.54/VM +0.44 in the [11 Albersheim] 
expression, Equation 44 may improve the accuracy at M=l and M>64. Finally, if one 
considers curve fitting error and linear versus square law error as independent 
variables, then the root mean square DT error for Pd=0.5, Pfa>5.0xl(H and M<2048 is 

V0.152+0.22 = 0.25 dB. 

5. Practical Lof argram Display Limitations 

5.1 Visual Integration Gain (VIG) 

When a human observer examines a lofargram to detect sinusodial signals, a visual 
and mental process of integrating the patterned brightness of columns of pixels occurs. 
Human vision appears to be oriented toward efficient pattern recognition rather than 
accurate collinear numerical integration as is implicitly assumed in detection theory. 
Thus it is not surprising to find that as the number of rows of pixels in a lofargram 
increases, narrowband detection performance does not always show the full 
improvement predicted by theory [33 Mohindra and Smith ]and [34 Dawe and 
Grigorakis]. This drop off in visual integration ability results in a loss, or penalty, 
when compared with the theoretical integration gain available, although this may not 
be significant for all display configurations [35 Webster]. Sonar operators frequently 
use 'eye integration', whereby a lofargram is viewed at a very shallow angle rather 
than directly facing the display surface, to minimise the visual integration (VIG) 
penalty and so improve the visibility of weak 'lines', with considerable effect. That is, 
VIG is dependent upon the subtended arc to the viewed display surface. 

Consider the detection threshold for a Gaussian signal in Gaussian noise with 
detection bandwidth B (which [23 Urick] refers to as w) and integration time T, where 
BT»1 and the signal to noise ratio can be considered small. Then the detection 
threshold, DT, is [23 Urick, p.385], 

DT = 5Logl0[f) (48) 

Now if the total integration time for a lofargram display is composed of ndl display 
rows, each representing To seconds of integration, 
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T = ndl.T0 

from, which 

DT = 5Logl0 -5LoglQ(ndl) 

(49) 

(50) 

However, [34 Dawe and Grigorakis], have found that, for one case of simulated 
lofargrams generated from a Gaussian stochastic process, 

DT = 5Logi0 — ] - 5Iog10 (ndl) + VIGindl) (51) 

where VlG(ndl) is a visual integration penalty (VIG > 0), being the difference between 
the observed and theoretically computed DT's for the particular representative 
lofargram style display which was used. That is, there was a human factor 'visual 
integration' loss. For the configuration measured, the VIG penalty was 

VIG (dB) = USlogl0(ndl) + 0.l96(ndl) 0.65 (52) 

Figure 5 illustrates the VIG obtained from some simulated lofargrams when using 
trained sonar observers [34 Dawe and Grigorakis]. The error bars are one standard 
deviation, measured at each ndl. 
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Figure 5.     VIG penalty example from [34 Dawe & Grigorakis]. 
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5.2 Coherent Integration Loss 

When analysis of a signal in noise requires an incoming waveform of length T to be 
blocked into sub-sections of length To, such that T=N.T0,ii phase continuity from 
block to block is not maintained (such as when a Discrete Fourier Transform is 
calculated), phase information is lost and a larger rninimum detectable signal to noise 
ratio results [25 Altes]. A larger SNR corresponds to poorer performance. Of course, 
there is phase coherence within each block, but the process of incoherent block 
processing cannot be completely undone, even with overlap DFT processing (except 
for the trivial exception of N=l). Examples of the difference in detection performance 
between coherent and incoherent summation processing can be seen in [7 Whalen, 
p.205], [31 Pryor], [9 Robertson], [22 Williams and Ricker], [32 Nuttall and Garber] and 
[12 Meyer and Mayer, p.25]. [22 Williams and Ricker, Figure 6], clearly shows the 
magnitude of this theoretical difference. An approximation to the amount by which 
incoherent processing provides lower gain than coherent, i.e., the incoherent 
integration penalty, IP, for the case of pd=50% and p/a=0.01%, is given by Equation 53. 

Ip (db) =4.91ogl0(M)-4(l-exp(-0.9logJM)) (53) 
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5.3 Quantisation 

When a continuous waveform is to be represented digitally, a virtually random 
quantisation error is added to the signal, effectively reducing the signal to noise ratio. 
This quantisation error is due to the finite set of numbers available for digital storage. 
In other words, an irreversible error signal is added to the input waveform. Binary 
quantisation is an extreme example of this, where a signal is represented by a zero or 
one only. In most computations, and certainly those utilising floating point processors, 
quantisation is  an invisible process unless poorly conditioned calculations are 
undertaken. 

At the machine to man interface, however, display technology often has a very limited 
dynamic range, when compared to the relatively large dynamic range of human 
vision. This means that the range of easily cliscriminable brightnesses available from a 
display screen may be as few as six or eight. In the past, it had been suggested in [36 
Marchment] that no more than eight grey levels on a display should be used. This 
reduction in the ability to resolve the magnitude of a signal by use of intensity 
modulation may cause a measureable display quantisation loss. [34 Dawe and 
Grigorakis] have shown an example of the effect of intensity quantisation on a 
simulated lofargram type display with 8 levels of grey shading: that is, quantisation to 
3 bits, and this is reproduced here as Figure 7. 

12 - 
«    Quantised Experimental, +/-1 sigma error bars 
 Uh-quantised Theoretical 
—— Quantised Experimental Trendline - »    10- 

3     8 ^fts^              1 i i    i   i   i  i 1           1        1       1      1     1    1 

13 
1      6- 

1                      1               1   **'- 

i    i   i   i  i 

i    i   i   i  i 

 1 1 l-L-l  

1        1       1      1      1 

Si  I   I  I I 

1   ' "^^^«^ 

 
1 

_
 

1 1 1 

 
1 
-

 

1 1 t 1 

- £      4- - y = -4.0183Ln(x) + 11.403 -1 
a       7 1                I             1          1         1       1      1 

.2 
1      0- 
Q     -2 

i     i     i    i    '"""r^v^ 
!                  I              1           1          1        1       1 
1                  1              1           1          1        1       1 

  —t ^ 1— + - + -i- -t 
s^T      i         !       i      i     t    i    i 
"-^"PMJ        '       i     i    i   i   i 

— 

-4 - 

-6 - 
1                        1                1 
1                        1                1 

i   i   i  i i 

_ l_      1     J      L- -1 

1     1     1    1   1 

1      1     1    1    1 

*~-r. ^^5L-r "■"          I        I       I      1     I 

1        ****.^    I        I       i      i     i 

I              I  ***• i        i       ill 

- 

Figure 7. 

5.4 Spe 

When a ; 
signal, ral 

26 

I                                                                   10                                                                ] 
Number of Rows 

Quantisation loss of a lofargram display with 8 intensity levels. 

ctral normalisation 

ofargram is used to display the power spectral density of a real aco 
iier than white Gaussian noise, the spectrum is often far from uniformly 

00 

ustic 
flat. 



DSTO-TR-0568 

Usually there are high levels at low frequency, tapering off as frequency rises [23 
Urick, p209]. If pixel intensity were assigned such as to cover the entire resulting 
dynamic range, the low frequency pixels would be saturated with brightness and the 
high frequency region would be black. Clearly, this would prevent any subtle 
variations in local signal level, such as a narrowband tonal, from being seen optimally. 

One effective solution to this dynamic range problem is spectral normalisation. A local 
(boxcar) average of adjacent pixel intensities in the same row is used to redefine, or 
normalise, the local mean for each pixel in turn. This is carried out independently for 
each display row, and is referred to as boxcar averaging. It has been found that this 
process has rninimal effect upon the visibility of sinusoidal signalss, while 
dramatically reducing the dynamic range required of the display. An example of the 
resultant display is shown by Figure 8. Note the stepped effect on the background 
noise in the vicinity of the three strong signals, due to the boxcar width. 

Estimates on the effect on MDS calculated by [40 Parker] are, for a boxcar width of 9 
cells, the loss is 0.5 dB and for a boxcar width of 33 cells, the loss is 0.13 dB. 

Figure 8.     A lofargram with 9 cell spectral normalisation applied. 

5.5 Double Threshold Detection (Binary Detection) 

When observing a lofargram display, an operator is actually implementing a double 
threshold detection process [12 Meyer and Mayer, p.99] and [31 Pryor, p.40]. A 
thresholder, internal to the processor, allocates grey scale values to pixel elements for 
display and then the operator later uses visual integration and thresholding to 
implement a second level of detection decisions. For example, an operator will not 
have an opportunity to make detections if the relevant pixels have not passed through 
the first detection stage successfully. This theoretically leads to a combinatorial 
decision process, possibly modifying the originally determined probabilities for 
detection and false alarm. This effect is often written off as a "Display Loss". 
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5.6 Multiple Sinusoids per Lof argram 

Use of a periodogram to obtain detections via the maximum likelihood estimate of a 
sinusoid in Gaussian noise, through use of the psd estimate of a waveform, is 
relatively simple. However this simplicity may not extend to a time series containing 
more than one sinusoid [24 Gardner, p.340] and [23 Urick, p.390], unless the number of 
such sinusoids is known and the separation between their frequencies greatly exceeds 
1/T [37 Walker]. 

If m statistically independent (orthogonal) signals of the same energy are to be 
detected, a modified ROC curve applies [23 Urick, p.391], approximated by 

Pd = 1 - O"1"1 (A)O(A - V^) (54) 
and 

Pfa=l-®m(A), (55) 

where 

0(A) = -TL= \j~dt- (56) 

To estimate the magnitude of this effect, consider the case of Gaussian statistics, with 
Pd=50% and Pfa=0.008%: this gives d=16. If the signal may be received in either of 10 
bins, then m=10 and from the modified ROC curves, [23 Urick, p.391], Pfe must be 
revised to Pfe=0.05%, corresponding to a Gaussian d~ll.5. From Equation 48, the 
change in DT is then approximated by 

ADT=5Log10[jj =5Log10(U9) = 0.72dB (57) 

However, whether a particular experimental setup needs to be analysed according to 
the requirements for multiple channel orthogonal signal processing must be 
determined very carefully. [38 Nolte and Jaarsma] develop a model which can be 
examined for this compliance. 

6. Conclusion 

The convenience and accuracy of the work by [9 Robertson] and [11 Albersheim ], as 
summarised in [14 Nielsen], is the recommended source for theoretical predictions of 
omnidirectional narrowband detection performance. Estimated accuracy of the 
predictions is ±0.4 dB worst case, but usually ±0.2 dB represents the average 
uncertainty. The validity of the calculations is confirmed by consistency with the work 
of other analysts, in particular [10 Nuttall]. 
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There are several potential departures from the theoretical DTs calculated by 
[14 Nielsen], when applied to lofargram displays. The corrections can be significant - 
for example quantisation and normalisation processes may acount for several tenths of 
a dB each; however as they are often dependant on human factors or implementation 
method, each experimental setup would require specific investigation. 
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Appendix A: 
Frequently Occurring PDFs in Detection Theory 

If .a signal is combined with narrowband Gaussian noise and subjected to an envelope 
or power law function, the distribution function of the result is as shown in Table A.l. 
This is then the input to the next stage of the detection process, the thresholder. 

Table A.l Probability density functions at the output prior to detection 

Detection 
process 

Input signal type 
(in Gaussian noise) 

Output probability density function 
For a Single sample For Many samples 

_E — 
Amplitude sinusoid Rician 

(generalised Rayleigh) 
approaches Gaussian 

Amplitude Gaussian Rayleigh approaches Gaussian 1 

Power sinusoid Chi-squared, order n* approaches Gaussian 

Power Gaussian Chi-squared, order n approaches Gaussian 

* For small sinusoidal signal to Gaussian noise power ratios 

If the input to a quadratic detector is a narrowband Gaussian process, the output will 
be chi-squared distributed [1 Whalen, Section 4.6]. 

Some interesting or important probability density functions which arise are: 

1.   The pdf of a sinusoid from [2 Bendat and Piersol, p.53] is: 

1 
p(x) = 

ny/X2-x2 
for | x | < X, p(x) = 0 otherwise (Al) 

200 

Figure A.l  An example of a sinusoidal pdf 
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2.   The pdf of a sinusoid in noise [3 Bendat and Piersol, p. 37] is: 

PW = 7S= \e 

z      (x-Scos0 

f« 
0 

4<7- J de (A.2) 

Figure A.2 An example of a sinusoid in noise -pdf 

Note how the shape transitions from a 'horned' to a flat peak and then a single peaked 
distribution as higher levels of noise are added to the sinusoid, corresponding to a 
reduction in the ratio S/cr„, where S=amplitude of the sinusoid and cr„=standard 
deviation of the Gaussian noise. Assumes zero mean for sinusoid and Gaussian noise. 

3.   The Gaussian pdf: 

p(x) = ■ 
TyflTt 

(.x-ftY 
2v2 

(A.3) 

■g  i - 

Figure A.3 An example of the Gaussian function 

200 

34 



4.   The Rayleigh pdf: 
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p(x) = ^e'^ for x > 0, p(x) = 0 otherwise (A.4) 

200 

Figure A.4 An example of the Raykigh function 

5.   The Rician pdf: 

x'+A' 

pfö = ±-e  ^ I0(f)        forx £ 0,p(x) = 0otherwise (A.5) 

where L is the modified Bessel function of zero order defined by: 

-2n 

/0(*)=s 
n=o22n(«!)2 

Figure A.5 An example of the Rician function 
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6.   Chi-squared with n degrees of freedom: 

p(n,x) = — e2        forx>0/      p(n,x) = 0 otherwise       (A.6) 

2*r(f) 

where T is the Gamma function. Note the progressive resemblance to a Gaussian (or 
Normal) distribution with increasing n. 

-n=l 
n = 2 
n = 3 

-n = 5 
n=10 

-n = 20 

Figure A.6  Examples of the x2 function 
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Appendix B: 
Expressing Detection Index d in terms of Pd and Pfa 

Consider the probability density function of a noise source, tyN and signal with 
noise, ^S+N with means MN and MS+N respectively and common standard deviations 

a=aN=CTs+N. Figure A.l illustrates the situation. See also [1 Nielsen, p.102]. 

Probability 
Density 

MN A.     MS+N 
Amplilude 

Figure B.l   Noise and signal with noise probability density functions 

By definition [2 Urick, p.382], the detection index is the ratio: 

[MS+N - MN? 
d = 

To illustrate how to obtain d, suppose $N and $S+N are Gaussian. Then the probability 

of a false alarm , Pfa , is the probability of the noise alone exceeding a threshold 
amplitude X, denoted by the shaded area in figure B.l: 

X-MN 
CO 

CO 

=    I §(x)dx 

dx 

X-MN 

a 

X-MN 
■ ■Pfa = i-M 

where O is the normalised cumulative Gaussian probability density function. 
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Now the detection probability, Pi, is the probability of the signal with noise source 
exceeding a threshold amplitude X, and so similarly: 

cr 
Rewriting the above two expressions yields: 

X-M, 

and 
X-M, 

*-=<t>-ia-pj 

S+N 

a 
=®-ia-pd). 

(B.1) 

(B.2) 

Recalling the definition of d and taking the positive root, 

^=MS+N   MN=^1([_pj_0_1(l_p^ 

Finally (B.l) - (B.2) gives: 

jd = Ms+N MN =a>-ia-ptl)-®-ia-pfa) a 
(B.3) 

An ROC curve for the case of Pd=0.5 can be calculated from expression B.3, and this is 
shown in Figure B.2. 

Probability of False Alarm versus Detection Index 
[ For  Probability of Detection = 50% ] 

25 T- 

„        20 
■o 

~ 15  1. 

o o 
Ü 
Q 

10 

5 

0 

 . , n 

0.000001 0.00001 0.0001 0.001 0.01 

Probability of False Alarm 

Figure B.2   Detection Index d versus -probability of false alarm Pfa 
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Appendix C: 
Nuttall Detection Threshold Correction to the 

Gaussian Approximation for Finite Bandwidth-Time 
Products for the case of a Sinusoid in Gaussian Noise 

[1 Urick, figure 12.11] provides a family of curves which may be used to correct for the 
Gaussian approximation used in deriving an expression for DT, for the case of a band- 
limited Gaussian signal in Gaussian noise. These have been obtained from the analyses 
of [2 Nuttall and Magaraci] and [3 Nuttall and Garber]. The [1 Urick] text explains that 
slightly smaller SNR corrections would be required for the detection of sinusoidal 
signals in Gaussian noise. As precise estimates of performance are required, the correct 
curves for a sinusoid in Gaussian noise have been generated below. 

From [3 Nuttall, figure 6], the required signal to noise ratio discrepancy between 
narrowband Gaussian and sinusoidal signals can be seen to be a maximum of about 
1.5 dB for the two cases illustrated, with Pd=0.5. The discrepancy between sinewave 
signal detection and a Gaussian approximation is plotted here as Figure C.1, and is the 
difference between the dashed curve and points marked 'x', for the given probabilities 
of false alarm, as a function of M=wt+1. Note that w is identical to the B, and t identical 
to the T used in the main text. 

6 -, 
s 

<L>      5 

s 
CO      4 

3 

Ü 
e  2 .. 

| 
■4-» 
Ü 

e o 
O 

i                 1            1         1       1      1 

-T \ 1 1 r 
i                        iiit 

-- —I 
0   Pfa=1.0E-2,Pd = b.5 

_x_ Pfa = 1.0E-8, Pd = 0.5 
- 

N.                       1                              1                     1                1             1           1 
^"\      1                              1                     I                1             1           1 

'   ^^""\     1                     1                1             1           I 

1      !                                              1                           ' 

i^L II                                              II 
III                                              I                           ' 
T-A|/                       i              i 

i          i       i     i    i   i 
i          ;       iiii 

U_J 

1                             ~~^-~^\                       ' 
1                                          l~^~---~^_ ' 

_l- 

~0  1                        1 
i                       i       LO—- 

1                          1               1 
1 

10 
M,wt+l 

100 

Figure C.l   Finite wt+1 correction to Gaussian approximation ofDTfor power detection of a 
sinusoid in Gaussian noise, Ffa=108 and 102 with Pd=50%. 

The curves above only apply to P/^10-8 and 10-2; the more useful P/a=l(H curve needs 
to be derived. This can be achieved from [2 Nuttall, figures 2 to 17]. With Pd=50%, 
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obtain dt from the plot off the corresponding figure. Then, by rearranging [3 Nuttall 
and Magaraci, equation 13], 

(C.1) 
N    2(wt + l) 

where 

— = SNR = required signal to noise ratio 

w    — narrowband filter bandwidth (Hertz) 
t     = total integration time (seconds) 

(Note: [3 Nuttall] refers to M= zut+1 = the number of independent squared envelope 
samples) 

Now subtracting the required SNR above (in dB) from the Gaussian approximation 
value off [3 Nuttall, figure 6], a curve for the correction term for a given P/a/ as a 
function of wt+1, is obtained. Figure C.2 below was produced in this way. Note how 
the suggested curve fits are satisfactory for all but the M=l, P/^IO-8 point. 

pa 

s o 
O 

C/3 

10 100 
M, Number of Independent Samples 

1000 

Figure C.2 Finite wt+1 correction to Gaussian approximation ofDTfor power detection of a 
sinusoid in Gaussian noise, Pfa=10-8,10*, 104 and 102 with Pd=50%, with curve 
fits. 
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